ChipFind - документация

Электронный компонент: STRF6672

Скачать:  PDF   ZIP
The Series STR-F6600 is specifically designed to satisfy the require-
ments for increased integration and reliability in off-line quasi-resonant
flyback converters. The series incorporates a primary control and drive
circuit with discrete avalanche-rated power MOSFETs.
Covering the power range from below 25 watts up to 300 watts for
100/115/230 VAC inputs, and up to 150 watts for 85 to 265 VAC
universal input, these devices can be used in a range of applications,
from battery chargers and set top boxes, to televisions, monitors, and
industrial power supply units.
Cycle-by-cycle current limiting, under-voltage lockout with hyster-
esis, over-voltage protection, and thermal shutdown protects the power
supply during the normal overload and fault conditions. Over-voltage
protection and thermal shutdown are latched after a short delay. The
latch may be reset by cycling the input supply. Low-current startup and
a low-power standby mode selected from the secondary circuit completes
a comprehensive suite of features. The series is provided in a five-pin
overmolded TO-3P style package, affording dielectric isolation without
compromising thermal characteristics.
FEATURES
s Flyback Operation with Quasi-Resonant Soft Switching
for Low Power Dissipation and EMI
s Rugged Avalanche-Rated MOSFET
s Choice of MOSFET Voltage and
r
DS(on)
s Full Over-Current Protection (no blanking)
s Under-Voltage Lockout with Hysteresis
s Over-Voltage Protection
s Direct Voltage Feedback
s Low Start-up Current (<400
A)
s Low-Frequency, Low-Power Standby Operation
s Overmolded 5-Pin Package
OFF-LINE QUASI-RESONANT
FLYBACK SWITCHING REGULATORS
Always order by complete part number, e.g., STR-F6652 .
Data Sheet
28102.8
TM
Series STR-F6600
ABSOLUTE MAXIMUM RATINGS
at T
A
= +25
C
Control Supply Voltage, V
IN
. . . . . . . . 35 V
Drain-Source Voltage, V
DS
Series STR-F6620 . . . . . . . . . . . . 450 V
Series STR-F6630 . . . . . . . . . . . . 500 V
Series STR-F6650 . . . . . . . . . . . . 650 V
Series STR-F6670 . . . . . . . . . . . . 900 V
Drain Switching Current, I
D
. . . See Table
Peak Drain Current, I
DM
. . . . . . See Table
Avalanche Energy, E
AS
. . . . . . . See Table
OCP/FB Voltage Range,
V
OCP
. . . . . . . . . . . . . . . -0.3 V to +6 V
Package Power Dissipation, P
D
control (V
IN
x I
IN(ON)
) . . . . . . . . . 0.8 W
total . . . . . . . . . . . . . . . . . . . See Graph
FET Channel Temperature, T
J
. . . +150
C
Internal Frame Temperature, T
F
. . +125
C
Operating Temperature Range,
T
A
. . . . . . . . . . . . . . . -20
C to +125
C
Storage Temperature Range,
T
S
. . . . . . . . . . . . . . . . -40
C to +125
C
LATCH
SOURCE
DRAIN
OVER-CURRENT
& FEEDBACK
GROUND
Dwg. PK-011-1
V
IN
1
2
3
4
5
UVLO
OVP
TSD
OSC.
OCP
FDBK
SUPPLY
INTERIM DATA SHEET
(Subject to change without notice)
February 22, 2000
TM
Series STR-F6600
OFF-LINE
QUASI-RESONANT FLYBACK
SWITCHING REGULATORS
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
TM
2
TM
Copyright 2000 Allegro MicroSystems, Inc.
FUNCTIONAL BLOCK DIAGRAM
FEEDBACK &
OVER-CURRENT
PROTECTION
GROUND
V
IN
SOURCE
DRAIN
Dwg. FK-002-6
0.73 V
TSD
OVER-VOLT.
PROTECT
R
S
Q
REF.
FAULT
LATCH
4
3
2
1.45 V
UVLO
+
1
+
DRIVE
REG.
OSC
c
SS
r
SS
1.0
0.6
0.2
50
100
STARTING CHANNEL TEMPERATURE in
C
NORMALIZED ALLOWABLE AVALANCHE ENERGY in mJ
Dwg.
0.4
0.8
0
25
75
125
Allowable package power dissipation curves
are shown on page 10.
Series STR-F6600
OFF-LINE
QUASI-RESONANT FLYBACK
SWITCHING REGULATORS
3
OUTPUT MAXIMUM RATINGS at T
A
= +25
C
Part Number
V
DSS
(V)
r
DS(on)
(
)
E
AS
(mJ)*
I
D
(A)
I
DM
(A)
P
OUT
(W)
at V
IN
(V rms)
STR-F6624
450
0.92
204
16
19
98
100
130
120
STR-F6626
450
0.58
327
16
26
145
100
190
120
STR-F6628
450
0.35
647
22
36
225
100
290
120
STR-F6632
500
2.54
7.4
9.0
11.2
36
100
50
120
STR-F6652
650
2.8
126
7.9
10
40
85-265
86
220
STR-F6653
650
1.95
260
5.6
14
58
85-265
120
220
STR-F6654
650
1.15
399
9.7
18
92
85-265
190
220
STR-F6656
650
0.71
521
16
25
150
85-265
300
220
STR-F6672
900
7.7
163
4.6
6.4
25 (no heatsink)
220
50 (with heat sink)
220
STR-F6674
900
4.49
242
6.0
9.2
28
85-265
76
220
STR-F6676
900
2.81
275
7.8
12
44
85-265
115
220
* Derate per graph, page 2
Derate per graph, page 12
Series STR-F6600
OFF-LINE
QUASI-RESONANT FLYBACK
SWITCHING REGULATORS
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
TM
4
TM
ELECTRICAL CHARACTERISTICS at T
A
= +25
C, V
IN
= 18 V (unless otherwise specified).
Limits
Characteristic
Symbol
Test Conditions
Min.
Typ.
Max.
Units
On-State Voltage
V
INT
Turn-on, increasing V
IN
14.4
16
17.6
V
Under-Voltage Lockout
V
INQ
Turn-off, decreasing V
IN
9.0
10
11
V
Over-Voltage Threshold
V
OVP(th)
Turn-off, increasing V
IN
20.5
22.5
24.5
V
Drain-Source Breakdown Voltage
V
BR(DSS)
I
D
= 300
A
V
DS
max
V
Drain Leakage Current
I
DSS
At V
DS
max
300
A
On-State Resistance
r
DS(ON)
V
S
= 10 V, I
D
= 0.9 A, T
J
= +25
C
see table
Maximum Off Time
t
off
Drain waveform high
45
55
s
Minimum Pulse Duration for Input of
Quasi-Resonant Signals
t
w(th)
Drain waveform high
1
1.0
s
Minimum Off Time
t
off
Drain waveform high
1
1.5
s
Feedback Threshold Voltage
V
FDBK
Drain waveform low to high
1
0.68
0.73
0.78
V
Oscillation synchronized
2
1.3
1.45
1.6
V
Over-Current Protection/Feedback
Sink Current
I
OCP/FB
V
OCP/FB
= 1.0 V
1.2
1.35
1.5
mA
Latch Holding Current
I
IN(OVP)
V
IN
reduced from 24.5 V to 8.5 V
400
A
Latch Release Voltage
V
IN
I
IN
20
A, V
IN
reduced from 24.5 V
6.6
8.4
V
Switching Time
t
f
V
DD
= 200 V, I
D
= 0.9 A
250
ns
Supply Current
I
IN(ON)
Operating
3
30
mA
I
IN(OFF)
Increasing V
IN
prior to oscillation
100
A
Insulation RMS Voltage
V
WM(RMS)
All terminals simultaneous refer-
2000
V
ence to a metal plate against
the backside
Thermal Resistance
R
JM
Output channel to mounting frame
1.75
C/W
Thermal Shutdown
T
J
140
C
Notes: Typical Data is for design information only.
1. Feedback is square wave, V
IM
= 2.2 V, t
h
= 1
s, t
l
= 35
s.
2. For quasi-resonant operation, the input signal must be longer than t
w(th)
and greater than V
FDBK
.
3. Feedback is square wave, V
IM
= 2.2 V, t
h
= 4
s, t
l
= 1
s.
Series STR-F6600
OFF-LINE
QUASI-RESONANT FLYBACK
SWITCHING REGULATORS
5
The voltage on the V
IN
terminal (pin 4) controls startup
and shutdown of the Series STR-F6600 devices.
Figure 1 shows a typical start up circuit. The V
IN
terminal voltage during startup is shown in figure 2.
Functional Description and Operation
continued, next page...
Figure 1 Start-Up Circuit
V
IN
TIME
DRIVE WINDING
VOLTAGE
16 V
(TYP.)
OPERATION START
UNDER-VOLTAGE LOCKOUT (V
INQ
)
11 V
(MAX.)
ON-STATE VOLTAGE (V
INT
)
STARTUP
DELAY
Figure 2 Waveform of V
IN
Terminal Voltage
at Startup
I
IN
V
IN
11 V
(MAX.)
30 mA
(MAX.)
100
A
(MAX.)
14.4 V
(MIN.)
I
IN(ON)
I
IN(OFF)
V
INQ
V
INT
Figure 3 Supply Terminal Current, I
IN
At startup, C2 is charged through the startup resistor R
S
.
When the V
IN
terminal voltage reaches 16 V (typ.), the
control circuit enables regulator operation. Once the
regulator starts, it draws up to 30 mA from C2 causing the
voltage on C2 to fall momentarily. Once the regulator
output voltage is established, the drive winding D starts to
charge C2 via D2. The voltage on C2 thus recovers to the
nominal drive voltage (18 V).
As shown in figure 3, the input current is below 100
A
(at T
M
= 25
C) prior to control circuit turn on. The latch
circuit holding current is 400
A (max.). To ensure latch
operation, the current in R
S
at the lowest ac input voltage
should be at least 500
A.
The value of R
S
thus determines the charge time of C2
and thus the startup delay. R
S
is typicaly 68 k
for wide
operation (90 V ac to 265 V ac) and 100 k
for 220 volt
ac operation.
The choice of C2 is a compromise between an accept-
able startup delay (in conjunction with R
S
) and a hold-up
time sufficient to keep pin 4 above its under-voltage
shutdown threshold of 11 V. Typically C2 is in the range
of 47
F to 100
F.
Series STR-F6600
OFF-LINE
QUASI-RESONANT FLYBACK
SWITCHING REGULATORS
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
TM
6
TM
Functional Description and Operation (cont'd)
Figure 4 Output Current I
OUT
Terminal Voltage V
IN
Figure 5 Soft-Start Operation
The drive winding voltage is set such that in normal
operation the C2 voltage is above the specified maximum
shutdown voltage (11 V) and below the specified mini-
mum over-voltage threshold (20.5 V).
In applications where there is a significant variation in
load current, the V
IN
terminal voltage may vary, as shown
in figure 4. This is due to peak charging of C2. In this
case, adding a resistor in the range of a few ohms to tens of
ohms in series with the rectifier diode D2 will bring the
voltage variation within limits.
Soft Start, Quasi Resonant and Voltage Regulation
Refer to the Functional Block Diagram and the Typical
Application Diagram (figure 6). The internal oscillator
uses the charge/discharge of an internal 4700 pF capacitor
(c
SS
) to generate the MOSFET drive signals.
The regulator has two modes of operation:
1. fixed 50
s off time (soft start) and
2. demagnetization sensing quasi-resonant mode --
normal operation.
In both cases, voltage regulation is achieved by taking
the composite optocoupled voltage error and superimposed
drain current ramp (current-mode control) and comparing
this to an internal 0.73 V reference. The FBK/OCP
comparator output pre-terminates the oscillator, which
turns off the MOSFET drive signal.
The MOSFET is turned on again when either c
SS
discharges or a quasi-resonance signal is detected on pin 1.
Fixed 50
s Off-Time: Soft-Start Mode
This is the mode of operation in the absence of a quasi-
resonance signal on pin 1 (see figure 5), and occurs at
startup and in overload. It also can be commanded exter-
nally to provide low-power standby operation.
In the absence of a feedback signal (such as at startup,
or a short circuit) the drain current ramp, sensed across R5
and noise filtered by R4/C5 appears on pin 1. When the
ramp voltage on C5 exceeds the 0.73 V reference signal,
the FBK/OCP comparator changes state, shutting down the
oscillator and turning off the MOSFET. Thus the voltage
on c
SS
is held high (6.5 V) by the comparator. When the
comparator changes state, c
SS
discharges via r
SS
; the
voltage on c
SS
ramps down until it reaches 3.7 V. The
oscillator turns on the MOSFET. This ramp-down time is
internally trimmed to 50
s. The comparator changes state
again and the cycle repeats. Thus in the absence of
feedback, the current-sense resistor R5 accurately controls
the MOSFET maximum current.
V
IN
I
OUT
Series STR-F6600
OFF-LINE
QUASI-RESONANT FLYBACK
SWITCHING REGULATORS
7
Functional Description and Operation (cont'd)
Figure 6 Series STR-F6600 Typical Application
FULL-BRIDGE
RECTIFIER
AC INPUT
+
Dwg. EK-003-5A
0.73 V
TSD
OVER-VOLT.
PROTECT
R
S
Q
REF.
FAULT
LATCH
4
3
2
1.45 V
UVLO
+
1
+
OSC
DRIVE
REG.
+
VOLTAGE
SENSE
+ OUTPUT
OUTPUT
+
5
WARNING --
These devices are designed to be operated at lethal voltages and energy levels. Circuit
designs that embody these components must conform with applicable safety requirements. Precau-
tions must be taken to prevent accidental contact with power-line potentials. Do not connect
grounded test equipment.
The use of an isolation transformer is recommended during circuit development and breadboarding.
Soft Start with Voltage Feedback (refer to figure 7)
Output voltage control is achieved by sensing the opto-
coupled feedback current (proportional to the output
voltage error signal) across resistor R4 and summing this
with the drain current ramp on R5. The signal on pin 1 is
therefore the opposite of the output voltage error signal
and the drain current ramp. The dc bias signal across R4 is
thus a function of the load. Consequently at light load, the
bias signal on R4 is closer to the threshold voltage of the
comparator.
To eliminate the possibility of false shutdown at
MOSFET turn on (when there is a current spike due to the
discharge of primary capacitance), a constant-current sink
of 1.35 mA is turned on, effectively lowering the input
impedance on pin 1, and momentarily increasing the
shutdown threshold.
Series STR-F6600
OFF-LINE
QUASI-RESONANT FLYBACK
SWITCHING REGULATORS
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
TM
8
TM
Functional Description and Operation (cont'd)
Figure 7 - Voltage Regulation Waveforms
Normal Operation (Quasi-Resonant) Mode
Refer to the Functional Block Diagram, Typical Appli-
cation diagram (figure 6), and Quasi-Resonance Wave-
forms (figure 8).
Regulation is achieved as in fixed off-time mode but
instead of having a fixed off-time, the demagnetization of
the transformer is sensed by a second comparator. This
comparator threshold, V
th(2)
is nominally 1.45 V. Quasi-
resonance sensing makes use of the natural magnetizing
and leakage inductances and self-capacitances of the
power circuit.
Figure 8 shows the drain voltage waveform, (V
DS
), on
pin 3 of the STR-F66xx, as well as V
P
, the voltage on the
primary of the transformer.
Once the current in the output diode stops flowing, the
primary stored energy `rings' as shown by V
P
and V
DS
.
The resonant frequency (f
r
) is determined by the magne-
tizing inductance of the transformer and the capacitor C4.
The addition of this capacitor sets the ringing frequency
and reduces the harmonic content in the V
DS
waveform,
lowering EMI. Also since V
DS
falls to a minimum during
the first half-cycle of the ring this point can be sensed and
used to turn on the MOSFET with minimum voltage
across it. Thus the MOSFET is low voltage and zero
current switched (LVS/ZCS).
Figure 8 Quasi-Resonance Waveforms
Dwg. GK-021
V
P
V
DS
V
D
I
D
t =
L
p
C
4
f
R
= 1/2
L
p
C
4
V
DS
(min)
V
P
V
IN
V
OCP
2.8 V
V
th(2)
1.45 V
V
th(1)
0.73 V
V
FDBK
Series STR-F6600
OFF-LINE
QUASI-RESONANT FLYBACK
SWITCHING REGULATORS
9
Functional Description and Operation (cont'd)
The voltage V
OCP
(pin 1) has the same form as the V
DS
waveform. The condition for quasi-resonant operation is
given by:
2.0 V < V
OCP
> 5.5 V for >1
s
Transformer design is exactly as for any other discon-
tinuous-mode type flyback.
For optimum EMI/efficiency performance, quasi-
resonance turn off is achieved when the MOSFET is at
zero voltage and zero current; that is, at one half cycle of
the quasi-resonance frequency, f
r
.
Over-Current Protection (OCP) Functions
Refer to the Functional Block diagram and Typical
Application diagram (figure 6).
The regulator implements pulse-by-pulse over-current
protection, which limits the maximum drain current in the
MOSFET on every pulse by switching off the internal
drive to the MOSFET, and the MOSFET drain current is
detected across R5.
Drive Circuit
Refer to the Functional Block Diagram.
This circuit is driven from the oscillator and provides
the current drive to charge and discharge the MOSFET
gate-source capacitance, thereby switching the device on
and off. The basic circuit configuration is totem-pole type
with an additional limiting resistor in the gate circuit at
turn on. This limits the turn on speed of the MOSFET,
thereby reducing EMI due to the discharge of primary
capacitance. This is possible because of the low-voltage
switching, zero-current switching nature of the turn on.
The value of the turn-off resistance is lower, allowing
the device turn-off current to be increased. This reduces
the turn-off loss in the MOSFET.
The gate drive voltage (8.3 V) is such that even with
0.73 V across R5 (drain current sense resistor), the
MOSFET is fully enhanced, allowing full use to be made
of its high current handling capacity.
Latch Circuit
The latch circuit keeps the oscillator output low to
inhibit operation of the regulator when over-voltage
protection (OVP) and thermal shutdown (TSD) circuits are
in operation. As long as the latch hold-in current is
400
A (max., supplied via R
S
) with V
IN
at 8.5 V (pin 4),
the regulator will stay in the off state.
An internal noise filter provides 10
s of noise immu-
nity to prevent spurious operation of the over-voltage
protection or thermal shutdown.
With the latch `on', the voltage on pin 4 cycles between
16 V and 10 V as shown in figure 9. This is due to the
higher current drawn when the pin 4 is at 16 V compared
to that drawn close to shutdown (10 V).
Pulling V
IN
(pin 4) below 6.5 V will reset the latch
circuit, re-enabling the regulator.
Thermal Shutdown
This internal feature triggers the latch if the internal
frame temperature exceeds 140
C (typ.).
The temperature is sensed on the control IC, but also
protects against overheating of the MOSFET as the
MOSFET and the control IC are mounted on the same lead
frame. Additionally, protection is provided for other on-
board components.
V
IN
TIME
16 V
(TYP.)
10 V
(TYP.)
Figure 9 Example of V
IN
Terminal Voltage
Waveform at Latch Circuit On
Series STR-F6600
OFF-LINE
QUASI-RESONANT FLYBACK
SWITCHING REGULATORS
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
TM
10
TM
Functional Description and Operation (cont'd)
Over-Voltage Protection Circuit
This feature of the STR-F66xx triggers the latch circuit
when the V
IN
voltage (pin 4) exceeds 22.5 V (typ.).
Because the voltage on pin 4 is proportional to the output
voltage (they are linked by the transformer turns ratio), the
regulator protects the output against over-voltage. This
function is entirely independant of the output-voltage
regulation loop and indeed will protect against output
over-voltage should the voltage error signal be lost. The
measure of over-voltage is given by:
V
OUT(OVP)
= V
OUT(NOM)
x V
IN(OVP)
/V
IN(NOM)
where V
IN(OVP)
is the drive voltage on pin 4.
In an over-voltage sensitive application, the drive
voltage can be set to close to 20 V and thus will protect the
output, if it rises more than 10% above nominal.
V
OUT
I
OUT
AC LOW
AC HIGH
Figure 10 Power Supply Output
Overload Characteristics
60
40
20
20
60
100
140
LIMITED BY FRAME
TEMP. = +125
C MAX.
RECOMMENDED MAX.
FRAME TEMP. = +115
C
0
TEMPERATURE in
C
ALLOWABLE PACKAGE POWER DISSIPATION in WATTS
Dwg. GK-0
CONTROLLER
0.8 W MAX.
MOUNTING SURFACE
TEMPERATURE
STR-F6676, 53 W MAX.
STR-F6672, 45 W MAX.
FREE AIR
ALL DEVICES
2.8 W MAX.
60
40
20
20
60
100
140
LIMITED BY FRAME
TEMP. = +125
C MAX.
RECOMMENDED MAX.
FRAME TEMP. = +115
C
0
TEMPERATURE in
C
ALLOWABLE PACKAGE POWER DISSIPATION in WATTS
Dwg. GK-0
CONTROLLER
0.8 W MAX.
MOUNTING SURFACE
TEMPERATURE
STR-F6656, 56 W MAX.
STR-F6654, 55 W MAX.
STR-F6653, 48 W MAX.
STR-F6652, 43 W MAX.
FREE AIR
ALL DEVICES
2.8 W MAX.
STR-F665x
STR-F667x
ALLOWABLE PACKAGE POWER DISSIPATION
Series STR-F6600
OFF-LINE
QUASI-RESONANT FLYBACK
SWITCHING REGULATORS
11
MOSFET Safe Operating Areas
(single pulse at T
A
= +25
C)
50
5
0.5
0.05
DRAIN-SOURCE VOLTAGE in VOLTS
DRAIN CURRENT in AMPERES
Dwg. GK
0.15
1.5
15
3.0
10
30
100
300
T
A
= +25
C
t
w
= 1 m
s SIN
GLE
PU
LSE
t
w
= 0.1 ms SINGLE PULSE
LIMITED
BY
V
DS
max
LIMITED
BY
r
DS(on)
50
5
0.5
0.05
DRAIN-SOURCE VOLTAGE in VOLTS
DRAIN CURRENT in AMPERES
Dwg. GK
0.15
1.5
15
3.0
10
30
100
300
T
A
= +25
C
t
w
= 1 m
s S
IN
GLE
P
ULS
E
t
w
= 0.1 m
s SING
LE PULSE
LIMITED
BY
V
DS
max
LIMITED
BY
r
DS(on)
50
5
0.5
0.05
DRAIN-SOURCE VOLTAGE in VOLTS
DRAIN CURRENT in AMPERES
Dwg. GK
0.15
1.5
15
3.0
10
30
100
300
T
A
= +25
C
t
w
= 1 ms SINGLE PULSE
t
w
= 0.1 ms SINGLE PULSE
LIMITED
BY
V
DS
max
LIMITED
BY
r
DS(on)
50
5
0.5
0.05
DRAIN-SOURCE VOLTAGE in VOLTS
DRAIN CURRENT in AMPERES
Dwg. GK
0.15
1.5
15
3.0
10
30
100
300
T
A
= +25
C
t
w
= 1 ms SINGLE PULSE
t
w
= 0.1 ms SINGLE PULSE
LIMITED
BY
V
DS
max
LIMITED
BY
r
DS(on)
STR-F6652
STR-F6653
STR-F6654
STR-F6656
Series STR-F6600
OFF-LINE
QUASI-RESONANT FLYBACK
SWITCHING REGULATORS
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
TM
12
TM
MOSFET Safe Operating Areas (cont)
(single pulse at T
A
= +25
C)
50
5
0.5
0.05
DRAIN-SOURCE VOLTAGE in VOLTS
DRAIN CURRENT in AMPERES
Dwg. GK
0.15
1.5
15
3.0
10
30
100
300
T
A
= +25
C
t
w
= 1 ms SINGLE PULSE
t
w
= 0
.1 m
s S
IN
GL
E P
UL
SE
LIMITED BY
LIMITED
BY
r
DS(on)
50
5
0.5
0.05
DRAIN-SOURCE VOLTAGE in VOLTS
DRAIN CURRENT in AMPERES
Dwg. GK
0.15
1.5
15
3.0
10
30
100
300
T
A
= +25
C
t
w
= 1 ms SINGLE PULSE
t
w
= 0.1 ms SINGLE PULS
E
LIMITED
BY
V
LIMITED
BY
r
DS(on)
STR-F6672
STR-F6676
1.0
0.6
0.2
50
100
FRAME TEMPERATURE in
C
NORMALIZED SAFE OPERATING AREA
Dwg. G
0.4
0.8
0
25
75
125
S.O.A. Derating
Drain Switching Current (I
D
) Derating
20
12
4.0
1.0
SOURCE-TO-GROUND VOLTAGE (V
2
-V
5
) in VOLTS
MAXIMUM SWITCHING CURRENT (I
D
) in AMPERES
Dwg
8.0
16
0
0.8
0.9
1.1
STR-F6656
STR-F6654
STR-F6652 & STR-F6672
STR-F6653
STR-F6672
T
A
= -20
C to +125
C
Series STR-F6600
OFF-LINE
QUASI-RESONANT FLYBACK
SWITCHING REGULATORS
13
10
0.1
0.001
1 m
POWER PULSE DURATION in SECONDS
THERMAL IMPEDANCE (Z
JC
) in
C/W
0.01
1.0
0.0001
10 n
10
10 m
100 m
100
100 n
1
STR-F6654
STR-F6656
STR-F6652
STR-F6653
10
0.1
0.001
1 m
POWER PULSE DURATION in SECONDS
THERMAL IMPEDANCE (Z
JC
) in
C/W
0.01
1.0
0.0001
10 n
10
10 m
100 m
STR-F6672
100
100 n
1
STR-F6676
STR-F665x
STR-F667x
Transient Thermal Impedance
Series STR-F6600
OFF-LINE
QUASI-RESONANT FLYBACK
SWITCHING REGULATORS
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
TM
14
TM
Capacitors
Electrolytic capacitors carrying large switching fre-
quency ripple currents (C1 and the output capacitors)
should be capable of handling the high rms currents
involved. Capacitors with low ESR are suitable. The
quasi-resonance capacitor C4 should be a high-voltage
ceramic type suitable for pulsed current operation.
The safety critical nature of the off-line application
must be considered when selecting both X and Y capaci-
tors for common- and differential-mode noise filtering.
Use of the low-noise quasi-resonant Series STR-F6600
will allow optimization of these capacitor values.
C5, the 470 pF filtering capacitor should be a 50 V
temperature-stable (COG) ceramic type.
Resistors
Resistor R5 carries high-frequency current, and so a low
internal inductance type of 1 W rating should be used.
Resistor R9 (R
S
) should be 2 W metal oxide.
All other resistors can be 1/4 watt or 1/2 watt metal
film.
Diodes
Diodes carrying the high-frequency flyback currents
(such as the transformer rectifier diodes) should have a fast
or ultrafast reverse-recovery characteristic, adequate
current handing and peak reverse-voltage rating. Allegro/
Sanken supplies a range of suitable diodes, and these are
described in the Allegro/Sanken short-form catalogue
(AMS-127) or latest issue of Bulletin D01EC0.
Optocoupler
Both Toshiba TLP 621 and Siemens SFH 610A2 or
615A2 are suitable. A current-transfer ratio of 50% to
200% is acceptable.
Error Amplifier
A standard TL431 transconductance amplifier or an
Allegro/Sanken Series SE error-amplifier IC can be used.
The Series SE is particularly well-suited to high-voltage
(70 V to 140 V) power outputs.
If a Series SE error-amplifier IC is used, normally phase
compensation is not required. Should additional high-
frequency attenuation be required, a capacitor (0.022
F or
less) can be connected across the primary side (collector-
emitter) of the optocoupler, a diode to maintain quasi-
resonant operation should be added in series with the
phototransistor emitter.
Applications Information
The products described here are manufactured in Japan by Sanken
Electric Co., Ltd. for sale by Allegro MicroSystems, Inc.
Sanken Electric Co., Ltd. and Allegro MicroSystems, Inc. reserve the
right to make, from time to time, such departures from the detail
specifications as may be required to permit improvements in the
performance, reliability, or manufacturability of their products.
Therefore, the user is cautioned to verify that the information in this
publication is current before placing any order.
These products are not authorized for use as critical components in
life-support appliances, devices, or systems without express written
approval.
The information included herein is believed to be accurate and
reliable. However, Sanken Electric Co., Ltd. and Allegro
MicroSystems, Inc. assume no responsibility for its use; nor for any
infringements of patents or other rights of third parties which may
result from its use.
Series STR-F6600
OFF-LINE
QUASI-RESONANT FLYBACK
SWITCHING REGULATORS
15
Dimensions in Inches
(for reference only)
0.276
0.016
Dwg. MK-003-50 in
0.614
0.008
0.126
0.008
0.906
0.012
0.100
0.004
AT ROOT
0.216
0.008
0.216
0.008
0.216
0.132
0.004
0.026
+0.008
0.004
0.177
0.028
1
5
0.033
+0.008
0.004
T REF.
M
0.136
0.004
Recommended mounting hardware torque: 4.34 5.79 lbfft.
Recommended silicone grease: Dow Corning SC102, Toshiba YG6260, Shin-Etsu G746., or equivalent
Series STR-F6600
OFF-LINE
QUASI-RESONANT FLYBACK
SWITCHING REGULATORS
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
TM
16
TM
Dimensions in Millimeters
(controlling dimensions)
7.0
0.5
Dwg. MK-003-50 mm
5.5
0.2
15.6
0.2
3.2
0.2
23.0
0.3
2.54
0.1
AT ROOT
5.5
0.2
5.5
3.35
0.1
0.65
+0.2
0.1
4.5
0.7
1
5
0.85
+0.2
0.1
T REF.
M
3.45
0.1
Recommended mounting hardware torque: 6 8 kgcm or 0.588 0.784 Nm.
Recommended silicone grease: Dow Corning SC102, Toshiba YG6260, Shin-Etsu G746., or equivalent